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a b s t r a c t

The paper reports on the development of unique standard gas consumption profiles for the end gas
consumers and the preparation of a method for the implementation of the developed profiles for
forecasting and preliminary gas allocation. Four years of gas consumption and temperature measure-
ments were used to develop eight types of consumption profiles for 17 gas consumer groups, which were
grouped according to their professional activity. As an alternative to the exponential, Gompertz or lo-
gistic model functions, frequently used in gas consumption model developments, the sigmoid model
function is implemented and model constants for the eight types of profiles are developed based on the
knowledge of the temperature independent portion of the gas consumption and separate treatment of
workdays/weekends. Based on these profiles, a method was developed for the preliminary allocation of
the gas consumption. The developed profiles and the gas consumption allocation method were validated
on the available set of gas consumption data for the Slovenian gas market, proving the sigmoid model
function based gas consumption allocation as an accurate and viable means of gas consumption
forecasting.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Natural gas is one of the main energy sources used in modern
society. As the majority of natural gas is supplied to the end con-
sumers through a pipeline based distribution system, there is a
need to forecast the gas demands in the future as accurately as
possible. In the case of a pipeline system, the main challenge is to
balance the supply and demands for the end consumers on a daily
basis, with the need to forecast the gas consumption within a day
and for the next day accurately. In addition to forecasting, tempo-
rary allocation of consumed gas among consumers is an important
part of the daily operation of the gas transmission system. (see
Fig. 12)

In order to predict the behaviour of a large number of energy
consumers, several methods have been used in the past. Statistical
approaches were employed to analyse gas consumption quite some
time ago by Herbert [1]. More recently, several algorithms were
used to make forecasts, such as the grey model, statistical models,
econometric models, neural network models, genetic algorithms,
ik), matjaz.hribersek@um.si
mathematical models, and their combinations [2]. The Hubbert
curve model has also been extensively used for supply forecasts.

Zeng and Li [3] used a self-adapting intelligent grey model for
forecasting the natural gas demand in China. They focus on annual
estimates and predict China's gas demands until 2020. Ma and Liu
[4] also predicted the growth of annual natural gas consumption in
China until 2020. They showed, that predicting the behaviour of
very large groups of consumers using the greymodel, is accurate. In
contrast, prediction of gas used by consumers of a single gas sup-
plier for a single day, which is the purpose of this paper, is more
challenging. Similarly, natural gas consumption was studied by Xie
and Li [5], who proposed the usage of the grey model in combi-
nation with a genetic algorithm for prediction of annual gas con-
sumption totals. Also, Azadeh et al. [6] proposed an adaptive
network-based fuzzy inference system-stochastic frontier analysis
algorithm for long-term natural gas consumption forecasting and
applied it to Bahrain, Saudi Arabia, Syria, and the UAE.

Wadud et al. [7] used a econometric model to study natural gas
demand in Bangladesh. They include gas price, GDP and number of
consumers to fit a relationship giving an estimate of total gas usage.
Such a method also works for large scale only, and it is useful for
developing energy polices and not appropriate for day-to-day
allocation and prediction of gas demands. Neural networks were
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used by Farzaneh-Gord and Rahbari [8] to perform unsteady sim-
ulations of response of natural gas distribution pipeline networks
to ambient temperature variation. They are able to estimate daily
gas demands. They successfully demonstrate that neural networks
are capable of predicting the response of gas users to temperature
variations. In this work, we develop a similar algorithm, based of
fitting a sigmoid curve. The main advantage of our approach is it
simplicity, which makes it easy for gas supply companies to
implement in their work flow, after the coefficients, presented in
the appendix of the paper, are published within the legislative
framework of a country they operate in.

Several other researchers focused on China. They follow the
same agenda, obtain measurements of gas usage for a chosen
country and implement a numerical method to forecast future
usage. A wide rage of methods is used, for example, Zeng [9] used
the grey model for modelling of natural gas demand in China.
Similarly, Shaikh et al. [10] used optimized nonlinear grey models
for forecasting China's natural gas demand. Rui et al. [11] used a
genetic algorithm to improve the least squares approach and study
natural gas consumption in China. Shaikh et al. [12] also studied the
gas demand in China using logistic modelling analysis, while Zhang
and Yang [13] used the Bayesian model averaging. A model for
short-term natural gas prediction using support vector regression
was presented by Zhu et al. [14]. Bai and Li [15] proposed a
structure-calibrated support vector regression approach to forecast
the daily natural gas consumption. Zhang et al. [16] considered the
impact of natural gas supply on infrastructure development in
China. Some of this studies optimise their model for predicting
annual averages, some focus on short term forecasting.

In this paper, we develop a model, which is aimed at day-ahead
and within-day forecasting of gas demand. When implemented on
national scale, it will enable a fair preliminary allocation of gas
consumption between gas supply companies operating in the same
market. Day-ahead forecasting was the focus of research conducted
by Panapakidis and Dagoumas [17] who proposed a model using a
combination of wavelet transform, genetic algorithm and neural
network techniques. They confirm that accurate forecasts of natural
gas demand can be essential for utilities, energy traders, regulatory
authorities and decision makers. They worked on data from Greece
and predict gas usage at distribution points. In our work, presented
in this paper, we make predictions at consumer level, giving gas
supply companies a possibility to predicts the behaviour of all
customers in their portfolio. Short term forecasting was the focus of
Yu and Xu [18], who used a combination of optimized genetic al-
gorithm and neural networks to develop a short-term load fore-
casting model of natural gas. Similarly, the use of genetic
algorithms to predict short-term usage of natural gas in houses was
proposed by Aras [19], however they focused on monthly averages
only. The split the gas consumption to temperature dependent and
independent parts. This approach is also taken in this paper.

Natural gas demand in Turkey was studied by Erdogdu [20].
Their objectivewas to estimate short and long run price and income
elasticities of sectoral natural gas demand in Turkey and to forecast
future growth in this demand using ARIMAmodelling and compare
the results with official projections Fagiani et al. [21] reviewed
several forecasting techniques aimed at developing smart natural
gas and water grids.

Pelikan and Simunek [22] used a genetic algorithm as an opti-
mising tool in risk management of the natural gas consumption.
Karadede et al. [23] developed a breeder hybrid algorithm for
natural gas demand forecasting and used it in Turkey to forecast
natural gas demand from 2001 to 2014. They claim that the breeder
hybrid model is superior to other models and can be used as gen-
eral natural gas demand forecasting tool with daily, monthly and
annually data with error close to zero.
Apart from natural gas forecasting, solar [24] and wind energy
[25] demands have been studied extensively. Chen et al. [26] pro-
posed a novel method based on nonlinear-learning ensemble of
deep learning time series prediction based on long short term
memory neural networks, support vector regression machine and
extremal optimization algorithms. Thaler et al. [27] have developed
an empirical model for prediction of energy consumption in a
distribution system. They used a normalised radial basis function
neural network to find an economically optimal energy distribu-
tion. Day-ahead forecasting of the electricity market was studied by
Koltsaklis et al. [28]. Li et al. [29] studied the relationship between
gas demand and electricity production for gas-to-power systems.
Qiao et al. [30] built a comprehensive systemmodel of a natural gas
and electricity coupled network. Oliver et al. [31] developed a
method for peak-day gas consumption for gas transmission system
operators. Baldacci et al. [32] used natural gas forecasting in order
to detect anomalies on the gas distribution network.

An econometric model for forecasting both the short and long-
term dynamics of natural gas consumption in Pakistan was used by
Khan [33]. They provide estimate until 2020. Taspinar et al. [34]
used artificial neural networks to forecast natural gas consumption
based on four years of data in Turkey. The ant colony algorithmwas
employed by Toksari et al. [35]. A degree-day concept was used by
Gumrah et al. [36] to study the gas demands of Ankara city. Ervural
et al. [37] also considered gas demand forecasting in Turkey using
autoregressive moving average, while Akpinar et al. [38] used ABC-
based neural networks and the sliding window approach for day-
ahead natural gas demand forecasting. In comparison to using the
sigmoid model, as proposed in this paper, the authors admit that
the coding of the neural network algorithm is difficult, however
claim that the use for companies should be easy. They stress that
the decision makers can use the natural gas demand forecasting
results obtained from forecasting models as decision support sys-
tems. In this work, we extent this hypothesis and claim that anwell
defined and easy implementable model can serve as a basis for
preliminary allocation of gas consumption between supply com-
panies on a national level.

Nonlinear programming and genetic algorithms were employed
in Iran by Forouzanfar et al. [39] to forecast natural gas usage. They
introduce the sigmoid curve, which is a special case of the logistic
equation, as a good model for many different contexts such as de-
mographics, T biology, economics, etc. The curves are used because
of their ability to describe these processes and display typical
phases of, among others, gas consumption: the low gas usage in
summer, the logarithmic growth in the winter months and satu-
ration when extreme cold limits gas consumption. In this work we
also employ the sigmoid curve to model gas consumption.

In Poland, Siemek et al. [40] have used an adaptation of the
Hubbert model to derive a model of future gas demand. They used
the Newton-Gauss algorithm to determine the model constant. In
our work, we use the Levenberg-Marquardt algorithm for the same
task. Liu et al. [41] used a time-series approach to model gas con-
sumption in Taiwan. Vondracek et al. [42] used a nonlinear
regression model with individual customer effect, typical time-
dynamics part and the temperature correction for natural gas us-
age estimation in the Czech Republic. Sabo et al. [43] investigated
the natural gas usage in Croatia on the basis of hourly temperature
and gas usage measurements. A review paper on the topic of
forecasting natural gas consumption was prepared by Soldo [2],
who summarised the approaches used by researchers based on the
forecasting area (world, national, individual consumer), forecasting
horizon (hourly, daily, monthly), gas data measurements used and
the model applied. An overview of forecasting methods for energy
demandwas prepared by Ghalehkhondabi et al. [44]. Poto�cnik et al.
[45] investigated risks associated with forecasting models and
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exposed the Slovenian economic incentive model that motivates
natural gas distributors to forecast their future consumption.
Poto�cink and Govekar [46] presented practical results of forecasting
for the natural gas market where they stress the importance of
incorporating the proper influential variables into the model, and
by properly understanding the underlying principles of energy
consumption. Poto�cnik et al. [47] also considered short-term resi-
dential natural gas forecasting in Croatia. The same research group
studied the influence of solar radiation on the gas forecasting
models ([48]). Artificial neural networks combined with the
Levenberg-Marquardt training algorithm were used to produce
short-term natural gas consumption forecasts in Serbia by Ivezic
[49]. Gascon and Sancez-Ubeda [50] used generalised additive
models for short-term natural gas demand forecasting. Aguilera
and Ripple [51] employed the Variable Shape Distribution model to
estimate the total endowment of conventional gas in Asia Pacific.
Azadeh et al. [52] propose to use an integrated emotional learning
fuzzy inference approach for optimum training of forecasting
models for natural gas demand.

Apart from modelling gas consumption at the consumer level,
models have been prepared that attempt modelling of the global
natural gas supply (Crow et al. [53]). These types of models
represent the natural gas market as a system of nodes and con-
nections with prices and flows, and seek an equilibrium solution in
the whole network (Busch [54]). Several mathematical approaches
are utilised: Linear programming, nonlinear programming, or agent
based economic modelling. Bianco et al. explore the relationship
between the residential [55] and nonresidential [56] gas con-
sumption and the Gross Domestic Product of Italy. They find strong
correlation between the two. A similar result was reported by
Apergis et al. [57], who considered economic growth in 67 coun-
tries, and by Karasalihovic et al. [58] for Croatia. Chavez-Rodriguez
et al. [59] modelled long-term natural gas dynamics in the south of
Latin America. They employed a combination of a simulationmodel
LEAP (Long range Energy Alternatives Planning System), and the
TIMESmodel was used to optimise the natural gas supply. Horschig
et al. [60] prepared a biomethane market simulation model, which
was used in Germany to explore the future relationship between
the natural gas market and the biomethane market. In order to find
the most efficient way of distributing gas, optimization of trans-
mission networks has been considered as well. Uster et al. [61]
developed an integrated large-scale mixed-integer nonlinear opti-
mization model for design and operation of natural gas trans-
mission networks. Rios-Mercado et al. [62] give a state-of-the-art
review of optimization problems in natural gas transportation
systems. On a smaller scale, Lo Cascio et al. [63] developed a multi-
objective optimization model for urban integrated electrical, ther-
mal and gas grids.

In this paper, we propose amethod, which, when coupledwith a
mathematical forecasting model, enables gas transmission system
operators to forecast or preliminarily allocate consumed gas fairly
and uniquely. The development of the proposed model was initi-
ated by the initiative of The Energy Agency of the Republic of
Slovenia, with a clear goal to derive amodel that would be accurate,
yet easy to use, whether used by the gas distributors for forecasting
the consumers demands or system operators for balancing pur-
poses, and therefore would be widely accepted when set into the
legislative framework, that had to be used by all members in the
Slovenian gas market. The developed model and its method of use
is simple to implement, and can be applied at the level of balance
group leaders, members of a balance group, the operator of the gas
market, the operator of the transport system, as well as at distri-
bution system operators. The proposed method is not geographi-
cally restricted and can also be implemented in other countries, if
the modelling assumptions are met. When adopted at a national or
a regional level, it may serve as a legislative tool, which enables fair
preliminary allocation of consumed gas and helps to avoid conflict
between balance group leaders or transmission system operators.
The underlying mathematical forecasting model should, naturally,
be prepared separately for each region, since specific local, regional
and climate characteristics must be taken into account.

The consumption of natural gas in a specific time period de-
pends on many factors (for example temperature of the sur-
roundings, other environmental elements, the purpose of usage,
etc). Certain groups of users exhibit similar usage characteristics,
which make it possible to predict the future usage based on the
known or estimated environmental parameters. Such estimates are
expected to work well only when used for a large number of users,
so those single individual users who do not follow the statistical
behaviour of the group completely, do not influence the estimate to
a large extent.

In order to make it possible for the natural gas suppliers to have
a unified, fair, and dependable model for estimating the natural gas
usage, the Unique Standard Consumption Profiles (USCP) for indi-
vidual groups of users are developed in this paper. The USCPs are
developed in the form of a mathematical model, which includes
several model constants which are fitted to the usage data of in-
dividual gas users. In this paper, we present the development of gas
consumption profiles based on the influence of the outside tem-
perature on the natural gas usage. The developed USCP can be used
in combination with a method for preliminary allocation of
consumed gas, which gives a unique and fair way of preliminary
allocation. Gas usage data was obtained from measuring con-
sumption of end users from individual characteristic groups in the
time frame of 2009e2013, provided by the Energy Agency of the
Republic of Slovenia. The USCPs in this work are prepared using the
sigmoid model function, which presents an alternative to the
exponential, Gompertz (Gutierrez et al. [64]), linear (Spoladore
et al. [65]), support vector regression (Bai et al. [15]), and logistic
model functions (Melikoglu [66]) used by other authors (Sabo et al.
[43]).

The basic requirement for the models and methods prepared in
this paper is to provide a simple algorithm for allocation of gas
between gas suppliers on a short-term scale, i.e. within a day, or for
the next day (Cui et al. [67]) based on forecasted climate conditions.
The models and method are meant to be published in a legislative
framework, and serve as a fair and standard method of performing
preliminary allocation of gas consumption among gas suppliers.
Since official temperature forecast is available, and since the
number of gas consumers to which the model will be applied is
expected to be large (i.e. all consumers within a country/region),
we chose the sigmoid regression model. It is simple, quick and
works well when used to model a large number of consumers. It
can be defined uniquely by publishing only four parameters. We
were able to establish, that the sigmoidmodel performs better than
other regression models. Furthermore, as time passes and new
measurements become available, the techniques developed in this
paper can be used to update the forecasting models and, thus,
provide a fairer and more accurate allocation of consumed gas
among gas suppliers.

The developed method for preliminary gas allocation is appli-
cable worldwide regardless of the forecasting models. The gas
consumption forecast models we present in this paper have been
developed based on four year longmeasurements of gas consumers
all around the country. Slovenia has very diverse climate conditions
(the Mediterranean in the south-west, alpine in the north, and
continental in the east). Thus, the developed models (published in
the Appendix), can be used in similar climate conditions around the
world. Alternatively, if a region possesses a several years long gas
consumption measurement dataset, only the method and the
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model derivation can be employed to recalibrate the model pa-
rameters for a specific region. The developed preliminary allocation
method, in combination with the presented forecast model, can be
used immediately after the adoption into the legislative framework.
Implementation within either a spreadsheet software or a website
is trivial, and can be donewith minimal effort. Themethod requires
data on average annual gas consumption of each consumer. This
dataset (or at least an estimate) is usually readily available at gas
providers.

The original contribution of this paper is twofold. Firstly, we
present a method for preliminary (day-ahead) and within-day gas
consumption allocation, which enables a fair and standardised
distribution among gas suppliers. The developed method is appli-
cable worldwide, and is not limited to a single region. Secondly, we
propose the use of a sigmoid model function (as opposed to the
exponential, Gompertz or logistic model functions proposed by
other authors) in support of the allocation method.

The paper is organised as follows. Section 2 presents the mea-
surements of gas consumption and temperature. Section 3 de-
scribes the development of consumption profiles and the method
for their use. Section 4 the presents the validation of the developed
profiles and the analysis of their applicability and accuracy. The
paper ends with the conclusions and an acknowledgement.

2. The experimental dataset

The Energy Agency of the Republic of Slovenia performed hourly
gas consumption measurements at 260 consumers (end users) in
Slovenia. The measurements were taken during the period
1.9.2009e31.5.2013. At the same time, 18 meteorological stations
recorded climate conditions.

2.1. Gas usage data

For each of the 260 consumers, 32856 hourly measurements
were made during the observation period. The consumers were
chosen in such a way, that they represented several Consumer
Groups (CG), as listed in Table 1. The consumers were chosen on the
basis of their type of activity (e.g. Agriculture, Civil Engineering,
etc.), reported in the standardised Business Registry and, secondly,
in such a way, that they were located in different local climate
regions.

The chosen gas consumers use gas in a temperature dependent
manner and are located in different climate regions. Such
arrangement of consumers into groups enabled us to produce
USCPs for individual groups, as well as the average USCP for all
Table 1
List of Consumer Groups showing the Consumer Group Code, the number of consumers

Code Consumer Groups

A Agriculture and hunting, wood industry
C Processing industries
F Civil engineering
G Retailing
H Logistics and storage
I Catering
J Information and communication
K Financial, insurance, advisory services
O Public administration
P Education
Q Health and social service
R Cultural and recreational services
S Others
W Individual residences
Zx Apartment buildings
HEA Heating use only
consumers.
Given the gas consumption dataset, we first performed statis-

tical analysis in order to determine the consumption variation
within the dataset. For each consumer, we calculated the average
daily consumption and standard deviation using the following
formulae:

mi >0 0 m¼ 1
N

X
i

mi; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i

m2
i �m2

s
;

where mi is the consumption data, m is the average, N the number
of all measurements and s the Standard Deviation. In order to
exclude erroneous gas consumption data, the measurements that
exceeded the 7s interval were eliminated from the dataset. This
meant eliminating 378 measurements.

Furthermore, due to equipment failure or other unforeseen
circumstances, all of the consumers do not have a complete four
year dataset of the measurements available. Themajority of the 260
consumers had between 70% and 90% of the maximum number
(each day with full 24-h resolution) of measurements. Based on this
analysis, the measuring points with less than 10% of the maximum
number of measurements possible were eliminated from the final
dataset. Thus, the final dataset included 231 consumers and 6.7
million measured gas consumption data points. The dataset is
presented in Fig. 1 and is available to readers upon request.

Within a specific Consumer Group there are several measuring
points (consumers) with different total annual gas consumption. In
order to create a single dataset for a group, first the daily sum of the
gas consumption of an individual consumer was calculated, Pji,
followed by calculation of the average daily consumption, Pjg , which
served as the denominator in the calculation of the normalised
daily consumption:

Pji ¼
X6am
6am

mi; Pjg ¼
XNg

i¼1

Pji; (1)

where Pji is the daily (from six in the morning until six in the
morning) gas consumption of an ith consumer on jth day, Pjg is the
total daily gas consumption of the gth Consumer Group and Ng is
the number of consumers in a group. In Fig. 2 the average hourly
gas consumption measurements are presented and compared with
the market gas price in the same time period. Although the market
gas price exhibits some variation during the time period, we do not
observe a strong correlation between the price and consumption.
Furthermore, we assume that during the measurement period the
and the number of measurements in the data set.

No. of consumers No. of measurements

5 153187
13 336731
7 192378
18 548512
10 304994
11 327122
7 207574
11 341154
11 317935
13 399056
12 377169
10 318867
11 303297
53 1573217
67 1954071
40 1098167



Fig. 2. Comparison of the average hourly gas consumption measurements and market
gas price. Correlation between the price and the consumption is not observed.

Fig. 1. Number of available gas consumption measurements for each day in the
dataset. For most days, about 90% of the total 231 ,24 ¼ 5544 measurements per day
are available. The inserted panel shows the total number of measurements for each
consumer, exposing the consumers which were eliminated due to small number of
available measurements.
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variation of natural gas price is small in comparisonwith Slovenia's
gross domestic product, thus the natural gas price was not
considered as a variable in modelling.

2.2. Temperature data

The Slovenian Environmental Protection Agency (ARSO) mea-
sures climate conditions at several meteorological stations around
the country. For the period in question, the temperature data was
made available to us from 18 meteorological stations. Locations of
the stations, along with the locations of gas consumers, are shown
in Fig. 3.

To develop the consumption profiles, we used average daily
temperatures. Due to regulations imposed on the gas market, we
define a gas day to last from six in the morning until six in the
morning. Since the meteorological stations report average tem-
perature measurements for calendar days only, the gas day tem-
perature is calculated as

T ¼18
24

Tday þ
6
24

Tdayþ1; (2)
where Tday is the averagemeasured or forecasted daily temperature
and Tdayþ1 is the average daily temperature for the next day
measured in ½�C�. Each gas consumer is pairedwith a representative
meteorological station, from where temperature measurements
and temperature forecasts are taken. Instead of average gas day
temperature, heating degree days could be used as a measure for
heat demand and as a basis for model development. We chose
average temperature, due to the gas market requirements of using
gas days and not calendar days.

Since information on the end use of gas for a specific consumer
was not available, we performed a simple check to identify the
consumers, who use gas for heating purposes only. Based on this
analysis, a new end group of users with 40 individual consumers
was created - heating (HEA) with end consumers, that do not use
natural gas at temperatures exceeding 20+C.
3. Unique standard consumption profiles

In this section development of unique standard usage profiles,
forecasting method and preliminary allocation method are
described.
3.1. Mathematical background

The temperature measurements from meteorological stations
were averaged to give a gas day average temperature Tj for each gas
day and for each consumer. Next, for each Consumer Group g a
normed daily gas consumption Pjg dataset was prepared.

The decision on which numerical model to implement was
taken based on the review of the measurement dataset and by
taking into account that the developed should be easily publishable
in legislative framework and its use enforced by the government to
all stakeholders in the gas market. Considering the fact that the gas
usage is high and constant at low temperatures, decreases
approximately linearly with increasing temperature for mid-range
temperatures, and is constant and low at high temperatures, we
decided to fit a model curve in the form of a sigmoid (Hellwig [68]).
The sigmoid curve is a tilted S-shaped curve that resembles trends
in the lifecycle of living things and phenomena [39]. Its S shape
gives it unique properties suitable for modelling the gas con-
sumption characteristics, described above, similarly to polynomial,
exponential, Gompertz and logistic model functions (Sabo et al.
[43]).

To confirm, that the sigmoid is the best possible choice, we
compare linear, parabolic, exponential and sigmoid models for a
single consumer in Fig. 4. The exponential function was defined as
Pmg ¼ Aþ ðB� AÞexpð� CðT þ DÞÞ. We observe best performance
using the sigmoid model for virtually all consumers. Thus, we
employed the sigmoid model for further analyses.

The sigmoid describing the relationship between gas con-
sumption and temperature PgðTÞ can be defined by four parameters
A, B, C and D. Its formula is:

Pmg ¼ A

1þ � B
T�40

�C þ D; (3)

where T is the temperature in ½�C� defined in eq. (2). Fitting of these
parameters in a least squares sense is a non-linear problem. The
Levenberg-Marquardt method (Press et al. [69]) was chosen to
perform the least squares fitting. The Levenberg-Marquardt
method requires the knowledge of derivatives of the sigmoid
with respect to the four parameters. These are:



Fig. 3. Locations of the weather stations (red circles) and locations of gas consumers (blue triangles) in Slovenia. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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vPg
vA

¼ 1

1þ �
B

T�40

�C ; vPg
vB

¼ � AC
�

B
T�40

�C
B
�
1þ � B

T�40

�C�2; (4)

vPg
vC

¼ � A
�

B
T�40

�C
�
1þ �

B
T�40

�C�2 ln B
T � 40

;
vPg
vD

¼ 1: (5)

An example of the sigmoid curve fitted to the gas consumption
dataset is shown in Fig. 5. In order to have a mathematically based
assessment of the quality of the fit, the following sample correla-
tion coefficient r was employed [68],:

Pg ¼
X
j

Pjg ; Pmg ¼
X
j

Pm;j
g ; r

¼

�P
jP

j
gP

m;j
g � nPg Pmg

�2

�P
j

�
Pjg

�2 � nPg
2
��P

j

�
Pm;j
g

�2 � nPmg
2
�;
(6)

where Pjg is the measured gas consumption for a consumer in the
group g on the day j, while Pm;j

g is its modelled counterpart and n is
the number of data points. The sample correlation coefficient r
takes values between 0 and 1, with a higher value describing a
better fit.
3.2. Types of unique standard usage profiles produced

Looking at the model results and analysing the measurements,
we discovered that the gas consumption of some consumers is
independent of temperature. For those modelling makes no sense,
thus in the forecasting algorithm described below, we recommend
using their annual average to forecast their consumption.

The gas consumption of temperature dependent gas consumers
is usually composed of two parts: A smaller temperature
independent part (for example, gas used for cooking), and a tem-
perature dependent part (for example, gas used for heating). The
gas distribution companies may or may not know the temperature
independent part of the gas consumption of their consumers. Thus,
we devised two types of models. The first, that takes all data into
account is applied when the temperature independent part of the
consumption is not known. The second applies to the situation
where the temperature independent part of the consumption is
known. For these models, we calculated the average consumption
in days when the outside temperature was above 20+C. This value
was then subtracted from the daily gas consumption measure-
ments and, thus, the second set of models was constructed.

Looking at the raw gas consumption and taking into account the
social interaction patterns, we decided to make models which
would additionally take into account variation of the consumption
due to the day of the week. Thus, we prepared separate models for
workdays and weekends, as well as models which do not distin-
guish between the days of the week.

A final subdivision of the models was made based on the
assumption whether the classification of the consumer into a
specific Consumer Group was known. Thus, models were made for
each group of consumers, as well as for all Consumer Groups
together. A decision tree for choosing one of the developed models
is shown in Fig. 6. Themodel constants are listed in the Appendix in
Tables 2e9
3.3. Forecasting method

The developed unique standard usage profiles are to be used by
taking the steps in the following calculation steps:

1 For each temperature dependent gas consumer one should
provide:
1a Average annual temperature dependent gas consumption

(PLTOP).
1b Average annual temperature independent gas consumption

(PLTNP). If the temperature independent share of the



Fig. 4. Comparison between linear, parabolic, exponential, and sigmoid regression curves showed the best result for the sigmoid model. Panels show measurements at a single
consumer modelled with linear (top left), parabolic (top right), exponential (bottom left) and sigmoid (bottom right) regression models.

Fig. 5. Examples of fitted model curves. For the left panel the whole dataset was used, HEA consumer group for the middle panel and catering group for the right panel.
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consumption is unknown, use PLTNP ¼ 0, while PLTOP is
equal to the total annual average gas consumption.

1c Number of days per year the consumer uses gas (DVL).
2 Based on the decision tree shown in Fig. 6 decide on the
appropriate model and choose the model constants A;B;C and
D.

3 The user should next obtain a forecast for the temperature data
from the relevant meteorological station. The temperature for



Fig. 6. A decision tree showing the eight types of the derived models.
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the day for which forecasting is made (T1) is needed as well as
the temperature for the next day (T2).

4 Using the following equation estimate the gas consumption NPP
for each gas consumer:

6 Make a sum of all forecasts to obtain the total forecast for all
consumers.

NPP1 ¼
A

1þ
�

B
T1 � 40

�C þD

NPP2 ¼
A

1þ
�

B
T2 � 40

�C þD

NPP¼ PLTOP
DVL

$
16$NPP1 þ 8$NPP2

24
þ PLTNP

DVL
3.4. Preliminary allocation method

When the total gas consumption for a hydraulic cell in the gas
distribution network is known, it is necessary to make a pre-
liminary allocation of the gas consumption of individual consumers
based on the application of the USCPs. The method proposed here
provides a unified and fair way of determining the preliminary
allocation and when it is introduced into the legislative framework
ensures smooth operation and helps to avoid conflict between gas
suppliers.

Let the total quantity of gas which needs to be allocated be
denoted by S. For each of the consumers, a forecast is made, based
on the USCPs provided in this paper. Let the number of consumers
be n and let the predicted gas consumption of i� th consumers be
Pi. Due to the inaccuracy of the USCP forecast, we notice that the
total measured gas consumption is not equal to the sum of all
forecasts for all consumers,

Pn
i¼1PisS. We want to calculate pre-

liminary gas consumption allocation Ai in such away that
Pn

i¼1Ai ¼
S: In order to achieve this, the preliminary gas consumption allo-
cation Ai is calculated using the following formula:
Ai ¼
PiPn
i¼1Pi

S: (7)

4. Results and discussion

Accurate predictions of the daily consumption for the distribu-
tion system on the national level could be obtained by the adoption
of the proposed preliminary allocation method through each of the
gas market operators, providing that the latter have a detailed
database of their users within the consumer groups. The accuracy
of these predictions depends strongly on the correct use of the
developed USCPs. In the following, the analysis of the performance
of the forecasts made by USCPs is made, and recommendations are
given on the usage of the developed USCPs.

4.1. Analysis of the correlation coefficient

The sample correlation coefficient r (Eq. (6)) gives a mathe-
matical indication of the quality of the representation of the gas
consumption by the developed USCP. The correlation coefficient
was estimated for all Consumer Groups and all models by model-
ling each consumer separately and averaging the results. The re-
sults are shown in Fig. 7. We observe a poor correlation for
Consumer Group F and a good matching for the group Q, while all
other Consumer Groups exhibit similar values of r. It has to be noted
that the poor correlation for the Group Fwas caused by the fact that
the number of data points in the Group F was small.

4.2. Forecasting a single gas consumer

The objective of developing USCPs is to have a reliable forecast
of the gas consumption for a given day for a large number of con-
sumers. The forecasting party, which will use the developed
method in this paper, is expected to run the model for all con-
sumers in its portfolio; on average at least a thousand or more
consumers. Using the USCP to forecast the gas consumption of a
single consumer, which is shown in Fig. 8, reveals a poor agreement



Fig. 7. Comparison of the correlation coefficient r for models (1e4) (left panel) and models (4e8) (right panel).

Fig. 8. Absolute difference between forecast and measurement based on the analysis
of each individual gas consumer for each day. The value on the ordinate axis is in
normed daily consumption.
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between the forecast and the actual consumptions. The disagree-
ment is expected since there is no way of knowing when the con-
sumer will stop using gas in a normal/average way due to the
equipment malfunction, vacations or other unforeseen circum-
stances. Fig. 8 shows the average difference between the model
Fig. 9. Comparison of the measured average gas consumption versus temperature and mod
Consumer Group (right).
forecast and measurement for each day and for each gas consumer
within a Consumer Group. The average difference is expressed in
normed daily consumption. We observe that, when forecasting a
single gas consumer for a single day, we can expect an average error
of about 0:3±0:3 average daily consumption.
4.3. Forecasting average consumption

Focusing on a day with a specific temperature, we calculate the
average measured gas consumption of each Consumer Group and
compare it with model predictions for this Consumer Group. The
prediction is obtained by averaging model forecasts of each indi-
vidual consumer in the group. Comparisons for the whole dataset,
the heating group and the residences group, are shown in Fig. 9. We
observe good agreement in almost the whole temperature spec-
trum. Discrepancies are noticeable at a very low temperature,
where consumer behaviour becomes more chaotic, and the differ-
ences in gas consumption on such days are larger than during the
warmer days. All models perform similarly, but models 5& 7, which
have the advantage of a known temperature independent part of
the consumption, outperform the other models on warm days. We
can conclude from this analysis that the models perform very well
when used to forecast consumption of a large enough number of
gas consumers.
el forecast; for the whole dataset (left), the Heating Consumer Group (middle) and Zx
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.4. Forecasting daily totals

The developed method and the associated models are supposed
to be used for within day or day-ahead forecasting for all con-
sumers in a large region. In this subsection, we try to estimate the
dependence of the error of the total consumed gas forecast on the
number of consumers. Since measurements are available for only
231 consumers per day, we extend the dataset over a longer period
of time and predict totals for such periods. In this way, we are able
to assess the forecast inaccuracy for a large number of consumer -
days.

Fig. 10 shows the difference in predicted and measured total gas
Fig. 10. Comparison of the total gas consumption predictions for a four year time span
(top), a single year (middle) and a single day (bottom).
consumption for a single day, for a total of one year (2012), and for a
total of the whole period 2009e2013. We observe that the model
prediction is good (in the range of ±1% of the measured data) for
the case of the four years time period, while the prediction is worse
for a single day or a single year case. These results were expected,
Fig. 11. Improvement of the total gas consumption predictions with increasing number
of consumer-days. Results for Group P (top), Q (middle) and R (bottom) are shown.



Fig. 12. Average RMS norm between the preliminary allocation based on the USCP
forecast and the actual measurements.
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and gave us an indication of themodel performance on a real-world
large dataset. Since only 231 consumers were predicted in the singe
day case, the accuracy is only within ±20%, while, when a larger
dataset is considered (231 times 4 years) the accuracy is improved
to ±1%. We observe that similar accuracy is obtained for each
Consumer Group which includes about 10 consumers. Thus, we
may conclude that z10,365 are needed to have ±5% accuracy of
the total daily consumption. For ±1% accuracy, at leastz10, 365, 4
consumers are needed. The proposed accuracy estimates are veri-
fied in Fig. 11, where we present the improvement of the total gas
consumption predictions with increasing number of consumer -
days for three Consumer Groups. We observe clear improvement of
prediction accuracy with the number of consumer - days. The re-
sults show a clear difference between models for consumers for
which the temperature independent portion of consumption is
known and models for consumers for which the temperature in-
dependent portion of consumption is not known. Difference be-
tween all-day models and weekend-workdays models is noticeable
only for a small number of consumer - days.

4.5. Validation of the preliminary allocation

Finally, we validate the method for preliminary allocation. For
each day we use USCPs to forecast gas consumption of all gas
consumers in the dataset. The accuracy of the preliminary alloca-
tion was assessed using the available gas consumption
measurements.

Let Mj
i be the actual measured gas consumption of the i� th

consumer on the j� th day and n be the number of consumers.
Thus, on the day j we must allocate

Sj ¼
Xn
i¼1

Mj
i (8)

Let Aj
i be the preliminary allocation for the i� th consumer on

the j� th day, which was estimated using calculation steps
described in Section 3.4 (eq. (7)). For each day we calculate the root
mean square (RMS) norm Rj between the preliminary allocation
and actual measurements using

Rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Aj
i �Mj

i

�2
Pn

i¼1

�
Mj

i

�2
vuuuut (9)

Fig. 12 shows the average RMS norm for the whole time
period for all consumer groups. The results indicate clearly that
the most accurate allocations are obtained when using models 5
& 7, i.e. when the temperature independent portion of the con-
sumption is known, and when weekends and workdays are
treated separately. Comparing the results for different Consumer
Groups, we observe similar results except for Group F, and, to a
lesser extent, for the groups J and K, where the lack of data did
not enable us to make a reliable USCP. Based on the fact that the
model which is valid for all consumers performs similarly well as
the models for individual Consumers Groups, we recommend its
usage in practice.

5. Conclusions

Unique standard gas consumption profiles were developed for
several Consumer Groups based on the measurement of gas con-
sumption and air temperature. The sigmoid model function was
implemented as the basis for the consumption profiles’ derivation.
Eight different types of consumption profiles were developed,
based on the separate treatment of workdays/weekends, and based
on a priori knowledge of the temperature dependent portion of the
gas consumption. Furthermore, a method was developed which
enables gas providers to allocate preliminary gas consumption
among consumers.

The developed profiles were tested and validated on the gas
consumption and temperature measurements data in a four year
period. The most accurate results were obtained when using the
profile which uses information on the temperature independent
portion of the consumption, and whenweekends and workdays are
treated separately. As anticipated, the developed gas consumption
forecasting leads to accurate results when used on a sufficiently
large number of consumers. Since the use of all consumers’ profiles
produced similar accuracy of the predictions as using the profiles
for individual groups of consumers, a recommendation can be
given that, when the number of consumers in a certain Consumer
Group is not sufficient for statistically reliable results, the usage of
the averaged profile is recommended. Even though the knowledge
of the temperature independent part of the consumption yield
better estimates of the gas consumption, its use should be avoided
when the data on temperature independent gas consumption is not
known reliably.

The preliminary allocation method developed in this paper is
applicable worldwide. Since Slovenia has a very diverse climate,
and since measurement were taken all around the country, the
models published in the Appendix may be employed as a first
approximation in other regions as well. When a 4-year span of gas
consumption measurement is available for a certain region, the
preliminary allocation method and the model development, pre-
sented in this paper, can be used to prepare a dedicated preliminary
allocation strategy for a given region.
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Table 5
Model constant for gas consumers for which the temperature independent part of
the consumption is not known and consumer groups is also not known. Model
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Appendix. Values of model constants
Table 2
Model constants for gas consumers for which the temperature independent part of
the consumption is not known and the consumer group is known. Model constant
are shown for workdays and weekends.

CG A B C D

workdays
A 2.797662121 �38.24962866 4.505060696 0.1045862894E-01
C 2.290237548 �35.54801194 5.418553819 0.1144397072
F 2.051814347 �39.57611862 9.629336345 0.4455177847
G 3.664103285 �42.71567369 4.580427091 0.3526982928E-01
H 2.612077544 �36.65626061 5.845160781 0.5605792755E-01
I 2.008469717 �35.71425854 7.059833825 0.3382810258
J 2.644637222 �36.72444718 4.213866757 �0.1644022043
K 2.423635417 �37.01550427 5.499923050 0.1279426654
O 4.175551021 �48.45465280 3.811653925 0.1829635148
P 2.925388740 �39.63687302 4.912728179 0.1301499672
Q 2.812187747 �37.80007356 4.682350393 0.1246898485
R 3.008399667 �38.69689550 4.815927442 0.8298815399E-01
S 2.361808877 �34.65784705 6.421446681 0.9432060294E-01
W 2.272966041 �33.88938227 6.668914307 0.1479208016
Zx 2.699474732 �37.81317242 5.722124803 0.1927017108
HEA 3.659508835 �45.74863788 3.816625682 �0.5583642253E-01
weekends
A 2.869851781 �39.17742432 4.438008632 0.3543419633E-01
C 3.707181321 �47.79404135 4.206468327 0.1266689639
F 1.343753647 �38.48568462 12.30978518 0.3701725487
G 4.757786435 �48.68465977 3.820053085 �0.4813105520E-01
H 3.019844968 �40.26813674 5.024342518 0.3349812007E-01
I 1.971430302 �35.51839160 7.307392273 0.3361228149
J 2.980688355 �39.99604175 3.793043982 �0.1536884454
K 2.837958451 �40.08894586 4.368162014 0.6057728561E-01
O 4.507854032 �52.82681602 4.033255733 0.2644000136
P 2.564417888 �39.87974740 5.268750863 0.1433415237
Q 2.808886719 �38.09131994 4.744539368 0.1256552603
R 3.428670178 �40.94848931 4.436268283 0.6910469370E-01
S 2.236630967 �35.70078584 6.094857438 0.1037380508
W 2.466661467 �34.30474504 6.242718753 0.1345745024
Zx 3.346144249 �40.93206201 4.999775325 0.1767613074
HEA 8.275196589 �71.50339408 2.730103727 �0.1626721227

Table 3
Model constant for gas consumers for which the temperature independent part of
the consumption is not known and the consumer group is known. Model constant
are for all days of the week.

CG A B C D

all days
A 2.817655100 �38.51097068 4.484561557 0.1755472659E-01
C 2.541605297 �38.07759219 4.864008888 0.1084081827
F 1.895293833 �39.59187866 10.25905647 0.4319338099
G 3.894241227 �43.99427654 4.372662003 0.1395732935E-01
H 2.693756733 �37.48128807 5.624553075 0.5130747762E-01
I 1.999370756 �35.66633049 7.123878203 0.3376091369
J 2.728515665 �37.56567940 4.086045102 �0.1609271926
K 2.505546484 �37.62998396 5.200211127 0.1116260365
O 4.370662652 �50.23406085 3.838470476 0.2069612404
P 2.900182045 �40.11365910 4.930399321 0.1324826762
Q 2.817307427 �37.91884005 4.693703095 0.1248122210
R 3.100196806 �39.20567817 4.718827452 0.7980621517E-01
S 2.349617873 �35.06353739 6.266707488 0.9601397164E-01
W 2.314349011 �33.94517749 6.577639958 0.1450774434
Zx 2.825833312 �38.44908321 5.538440185 0.1893304664
HEA 3.993433742 �48.00639731 3.643751180 �0.6039593603E-01

Table 4
Model constant for gas consumers for which the temperature independent part of
the consumption is not known and consumer group is also not known. Model
constant are shown for workdays and weekends.

day A B C D

weekends 2.801042542 �39.69944287 4.941970845 0.1899869845
workdays 2.430900634 �37.19153478 5.614144797 0.2168963858

constant are for all days of the week.

day A B C D

all days 2.516363414 �37.79199079 5.424167096 0.2097926381

Table 6
Model constant for gas consumers for which the temperature independent part of
the consumption is known and the consumer group is also known. Model constant
are shown for workdays and weekends.

CG A B C D

workdays
A 2.902661073 �37.36421461 4.234911898 �0.1898197150
C 2.519453999 �35.14399053 4.955334677 �0.8831554064E-01
F 2.418577069 �39.17820665 6.966474250 �0.7611851803E-01
G 3.830051506 �42.58141137 4.402630890 �0.1097956369
H 2.803649027 �36.64910850 5.468291388 �0.8742413743E-01
I 2.068288073 �35.11539972 6.838570872 �0.3258564445E-01
J 2.658774803 �36.73593124 4.194643086 �0.1731702797
K 2.583993071 �36.75462029 5.003084733 �0.1005292940
O 6.400906175 �57.98018175 2.769831022 �0.2645523978
P 3.251882747 �40.30839300 4.451333348 �0.1098004477
Q 2.914418421 �37.50625037 4.531415322 �0.1221025369
R 3.138635684 �38.55169864 4.602981935 �0.1148705816
S 2.501129039 �34.85959236 6.044477345 �0.6745998083E-01
W 2.268016151 �33.70125240 6.727159007 �0.6110378412E-01
Zx 2.716219318 �37.50708202 5.654223725 �0.7493394114E-01
HEA 3.659508835 �45.74863788 3.816625682 �0.5583642253E-01
weekends
A 3.083245268 �38.65307435 3.991477171 �0.1934197995
C 5.064251518 �53.57912042 3.375922292 �0.1106958990
F 1.323026329 �37.88984228 10.72263327 0.3642880088E-01
G 4.750587989 �47.80261770 3.766548160 �0.1745236258
H 3.291703554 �40.59546695 4.650654201 �0.1149214944
I 2.037914648 �34.95385322 7.054650244 �0.3642859203E-01
J 2.997784564 �40.02663370 3.775420339 �0.1623190806
K 3.019823533 �39.73762725 3.944139757 �0.1924279771
O 21.98950993 �119.9136061 2.394916941 �0.2278786669
P 2.899539334 �40.73223105 4.719552851 �0.9018026003E-01
Q 2.872169507 �37.65766910 4.635999030 �0.1140092365
R 3.565475521 �40.86958730 4.253502236 �0.1255101602
S 2.411378431 �35.90133018 5.687008442 �0.7615448428E-01
W 2.461088416 �34.11017064 6.297608912 �0.7535926786E-01
Zx 3.365342773 �40.63964718 4.900019789 �0.9487361914E-01
HEA 8.275196589 �71.50339408 2.730103727 �0.1626721227

Table 7
Model constant for gas consumers for which the temperature independent part of
the consumption is known and the consumer group is also known. Model constant
are for all days of the week.

CG A B C D

all days
A 2.950691734 �37.70853923 4.164194073 �0.1907738367
C 2.837035441 �37.92514524 4.360975513 �0.1031301831
F 2.185907678 �39.32855651 7.491156037 �0.3985900125E-01
G 4.038575005 �43.77553668 4.225571128 �0.1265567701
H 2.901142595 �37.53182249 5.247133684 �0.9344816687E-01
I 2.061190371 �35.07672010 6.893117353 �0.3382554242E-01
J 2.743141906 �37.58071093 4.067673353 �0.1696075822
K 2.676226396 �37.37889602 4.717332124 �0.1225646785
O 7.876570152 �66.39090333 2.653895722 �0.2538320343
P 3.246899222 �40.91952369 4.449124122 �0.1064646040
Q 2.910084178 �37.59325728 4.552951691 �0.1200301512
R 3.231527450 �39.07526856 4.513887959 �0.1171139411
S 2.502329856 �35.27840313 5.881063629 �0.7128292102E-01
W 2.309869243 �33.75773384 6.633448103 �0.6431415401E-01
Zx 2.844138010 �38.14629066 5.459306373 �0.7937059158E-01
HEA 3.993433742 �48.00639731 3.643751180 �0.6039593603E-01



Table 8
Model constant for gas consumers for which the temperature independent part of
the consumption is known and the consumer group is not known. Model constant
are shown for workdays and weekends.

day A B C D

workdays 2.535858418 �36.61568014 5.393126978 �0.8145854682E-01
weekends 2.873157235 �38.89400882 4.773060939 �0.1076673249

Table 9
Model constant for gas consumers for which the temperature independent part of
the consumption is known and the consumer group is not known. Model constant
are for all days of the week.

day A B C D

all days 2.617690720 �37.17940604 5.212215141 �0.8866374719E-01
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